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ble species generated by anodic oxidation in a strongly acid­
ic medium,10 supports the participation of the intermediate 
ion in this reaction. 

Another mechanism which may lead to aminobiphenyls 
should be considered (Scheme III). This involves an electro-
philic attack of benzenium ion on phenylhydroxylamine, 
followed by aromatization and dehydration. However, this 
mechanism hardly explains the formation of 8 and 11 from 
4-methylphenylhydroxylamine (7). 
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Oxygen Binding to Iron Porphyrins 

Sir: 

The current literature abounds with simple synthetic 
models of myoglobin and hemoglobin,1"5 all of which are 
capable of binding oxygen reversibly. In addition to revers­
ible binding, however, a good model must be inert towards 
oxidation and reproduce the thermodynamic constants of 
the biological systems. We report here the first such com­
parison of a synthetic ferrous porphyrin model with myoglo­
bin, the results of which help to delineate the role of the ap­
oprotein in oxymyoglobin. 

Using the "picket fence" porphyrin model, Fe(a,a,a,a-
TpivPP)(l-MeIm),4-6 we have determined the enthalpy and 
entropy of oxygen binding in the solid state. The porosity of 
the crystals of this material allows the full equilibration of 
the solid with oxygen without the difficulties of most solu­
tion studies: the eventual irreversible oxidation of the com­
pound and the complex equilibria with axial base. The 
solid-gas approach has the further advantage of a known 
molecular geometry as determined from x-ray diffraction 
data.7 A simple manometric adsorption apparatus8 in con­
junction with an electronic manometer9 was used in all ex­
periments. The temperature of the apparatus was controlled 
to ±0.1 0C, while connected to a vacuum line, which could 
be evacuated to a pressure of 1O-6 Torr. Volumes were cali­
brated by expanding nitrogen from an outside gas bulb of 
known volume and pressure into the evacuated apparatus. 

Isotherms were determined by desorption of a fully satu­
rated10 sample of Fe(a,a,a,a-TpivPP)(l-MeIm)-Ch into an 
evacuated volume. Each isotherm consists of at least six 
points, each point representing the extrapolation to equilib­
rium of 4 hr of data.1 ' These isotherms followed the Lang-
muir equation at low pressures (less than 15 Torr), indicat­
ing that the iron binding sites are noninteracting in the 
crystal lattice. A typical plot of 0/(1 — 6) vs. po2, where 8 is 
the fraction of saturation at equilibrium, is shown in Figure 
1 for the data collected at 25.0°. The thermodynamic en­
thalpy and entropy of reaction with oxygen were derived 
from a weighted least-squares fit to a van't Hoff plot rang­
ing over 5O0.12 The calculated constants are AH° = —15.6 
± 0.2 kcal/mol and AS0 = - 3 8 ± 1 cal deg - 1 mol - 1 (stan­
dard state of 1 atm). The interpolated A^eq

20° is 2400 a t m - 1 

or equivalently, p\/220° = 0.31 Torr. It should be noted that 
some deviation from the Langmuir isotherm was observed 
at high pressures at 0°; this is attributable to a strong physi­
cal adsorption of oxygen on the porphyrin rather than to the 
binding at the iron atom: the metal free ligand, a,a,a,a-
H2TpivPP, physically adsorbs oxygen with an equilibrium 
binding constant of roughly 2 a tm - 1 at 0°. It should also be 
noted that in contrast to solution models, our solid samples 
are remarkably inert to oxidation. For example, one sample 
has been cycled between O2 and vacuum more than 200 
times with no observable irreversible oxidation. 

A comparison of our thermodynamic constants with 
those of a selection of myoglobins and of the model of 
Chang and Traylor3 is made in Table I. It is clear that the 
"picket fence" is a good model for myoglobin in this re­
spect. The close similarity of the model to the biological sys-
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Figure 1. Isotherm of O2 binding of Fe(a,a,a,a-TpivPP)(l-MeIm) at 
25.0°. Error limits set from accuracy of manometer. The least-squares 
fit to Langmuir isotherm equation (9/(1 — S) = (p\/i)~^Po2) is shown 
with a slope of 2.53 Torr-1 measured over the range of 6 = 65% to 8 = 
96%. 

Table I. O2 Binding by Representative Myoglobins 
and Myoglobin Models 

Source0 

This paper 
Chang and Traylor modeld 

Human Mb, reconst.e 

Ox, Mb, adult/ 
Tuna, Mh? 
Horse, Mb^ 

Py2
200, 

Torr 

0.31 
0.32 
0.72 
0.55 
0.90 
0.70 

AH", 
kcal/mole 

-15.6 

-13.4 
- 1 5 
-13 .2 
-13.7 

AS", 
euft 

- 3 8 

-32<-
_37c 
- 3 2 ^ 
- 3 3 ^ 

aIt should be noted that some variance exists in the literature 
concerning these constants due to both the experimental diffi­
culties of the myoglobin systems, as well as to the possible inherent 
differences between myoglobins of different species. * Standard 
state of O2 partial pressure = 1 atm. ^Calculated from reported 
Py2

20 ° and AH°. dC. K. Chang and T. G. Traylor,Proc. Nat. Acad. 
Sci. U.S.A., 72, 1166 (1975). eA. Rossi Fanelli and E. Antonini, 
Arch. Biochem. Biophys., 11, 478 (1958)./A. Rossi Fanelli, E. 
Antonini, C. DeMarco, and S. Benerecetti, Biochem. Hum. Genet., 
Gba Found. Symp., 144 (1958), cited in E. Antonini and M. 
Brunori, "Hemoglobin and Myoglobin in Their Reactions with 
Ligands", American Elsevier, New York, N.Y., 1971, p 221. 
SX. Rossi Fanelli, E. Antonini, and R. Giuffre, Nature (London), 
186, 896 (1960). hE. Antonini and M. Brunori, "Hemoglobin and 
Myoglobin in Their Reactions with Ligands", American Elsevier, 
New York, N.Y., 1971, p 221. 

tem argues that the apoprotein does not contribute signifi­
cantly to the binding of oxygen,14 and suggests that the pri­
mary role of the protein in myoglobin is to protect the heme 
from oxidation. 

An independent analysis of these thermodynamic con­
stants is possible. One can partition the entropy of an oxy­
gen molecule into its translational, rotational, vibrational, 
and electronic (i.e., degeneracy) components.15 Because the 
frequencies of the FeC>2 vibrations are not known, we can­
not accurately calculate their contribution to the entropy of 
the complex; however, if we assume them to be of low fre­
quency (400-100 cm - 1 ) , then they would contribute an ad­
ditional 3 to 11 eu. If one includes the loss of the fivefold 
electronic degeneracy of the Fe" (S = 2) and treats the in­
ternal rotation of the bent Fe-O-O system as a free rotor 
(~7 eu), then 

AS°caicd = -(Sof™ + 5 O 2
r 0 t + So2

v i b + So2
e l e c + 

SFeeleC) + SFe02
inlr0t " 5Fe02

v i b 

= - ( 3 6 + 1 1 + 0 + 2 + 3 ) + 7 + ( 7 ± 4 ) 

= 38 ± 4 eu (standard state of 1 atm) 

The agreement between the calculated and experimental 

values is consistent with the fit to the Langmuir isotherm, 
which requires independent binding sites, and with the ab­
sence of substantial systematic errors in the experimental 
determination. This demonstration that the "picket fence" 
porphyrin is a well-behaved system for solid-gas equilibri­
um studies sets the stage for further studies of parameters 
such as the nature and closeness of the axial base and the 
polarity of the oxygen binding site. 
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Mechanism of the Cobalt Carbonyl-Catalyzed 
Homogeneous Hydrogenation of Aromatic 
Hydrocarbons1 

Sir: 

A variety of polycyclic aromatic hydrocarbons (PAH) 
are homogeneously hydrogenated in a highly selective man­
ner2-4 in the presence of Co2(CO)s and synthesis gas (CO 
+ H2) at elevated temperature and pressure ("oxo" condi­
tions). The operation of this catalyst, being one of the few 
known homogeneous catalysts for aromatic hydrogenation, 
has special interest. By analogy with the generally accepted 
mechanism of hydroformylation of olefins with the same 
catalyst it has been assumed5 that the key reaction is the 
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